

First Semester M.Tech. Degree Examination, Dec. 2013/Jan. 2014 Finite Element Method

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. State the law of conservations of mass, momentous and energy. (06 Marks)
 - b. Write the steps involved in discrete system. (06 Marks)
 - c. Explain steps involved in solving a problem by FEM. (08 Marks)
- 2 a. Obtain the shape functions for one dimensional linear element in global co-ordinate system.

 (10 Marks)
 - Obtain the shape function for one dimensional quadratic elements in natural co-ordinate system.
- 3 a. Explain iso, sub and super parametric elements. (08 Marks)
 - b. Obtain the shape functions for linear quadrilateral elements using Lagrange formula.

(12 Marks)

(06 Marks)

- 4 a. Solve the governing equation $\frac{d^2\theta}{d\xi^2} \mu^2\theta = 0$ by Rayliegh Ritz method. (10 Marks)
 - b. List the properties of shape functions.

Explain penalty formulation. (04 Marks)

A composite wall consists of three materials, as show in Fig. Q5. The outer temperature is $T_0 = 20$ °C. Connection heat transfer takes place on the inner surface of he wall with $T_{\infty} = 800$ °C and h = 25 w/m²°C. Determine the temperature distribution in the wall.

(20 Marks)

- 6 a. Explain the application of Galerkin method for transient equation subjected to appropriate boundary and initial conditions. (12 Marks)
 - b. Explain phase change problem. (08 Marks)

12MTP12/13MTH12

An axial load $P = 300 \times 10^3 N$ is applied at 20°C to the rod as shown in figure. The temperature is then revised to 60°C. Determine the nodal displacements and elements stresses.

$$E_1 = 70 \times 10^9 \text{ N/m}^2$$
 $E_2 = 200 \times 10^9 \text{ N/m}^2$
 $A_1 = 900 \text{ mm}^2$ $A_2 = 1200 \text{ mm}^2$
 $\alpha_1 = 23 \times 10^{-6} \text{ per °C}$ $\alpha_2 = 11.7 \times 10^{-6} \text{ per °C}$

(20 Marks)

- **8** Write short notes on:
 - a. Upwind finite element method
 - b. Diffusion problems
 - c, Split scheme
 - d, Mesh convergence. (20 Marks)

* * * * *